Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On isometries of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains

Let 1 and 2 be strongly pseudoconvex domains in Cn and f : 1 → 2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C1 map to ̄1. We then prove that f |∂ 1 : ∂ 1 → ∂ 2 is a CR or anti-CR diffeomorphism. It follows that 1 and 2 must be biholomorphic or anti-biholomorphic. Mathematics Subject Classification (2000): 32F45 (primary); 32Q45 (secondary).

متن کامل

On the Kobayashi-Royden metric for ellipsoids

The Kobayashi indicatrix (infinitesimal unit ball) of a domain in IE n is known to be a biholomorphic invariant. In particular, if a domain is biholomorphic to a ball, then the indicatrix is the ball. Until the recent deep results of Lempert [4], it was not known to what extent the indicatrix characterizes the domain. Sibony had shown earlier that the indicatrix of any pseudoconvex circular dom...

متن کامل

On Analytic Interpolation Manifolds in Boundaries of Weakly Pseudoconvex Domains

Let Ω be a bounded, weakly pseudoconvex domain in Cn, n ≥ 2, with real-analytic boundary. A real-analytic submanifold M ⊂ ∂Ω is called an analytic interpolation manifold if every real-analytic function on M extends to a function belonging to O(Ω). We provide sufficient conditions for M to be an analytic interpolation manifold. We give examples showing that neither of these conditions can be rel...

متن کامل

Comparison between the Kobayashi and Carathéodory Distances on Strongly Pseudoconvex Bounded Domains in C"

In this paper we prove that the ratio between the Carathéodory distance and the Kobayashi distance in a strongly pseudoconvex bounded domain in C" is arbitrarily close to 1 whenever at least one of the points is sufficiently near the boundary.

متن کامل

Estimates of the Kobayashi-royden Metric in Almost Complex Manifolds

We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold (M, J) admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in M and to give a sufficient condition for the complete hyperbolicity of a domain in (M, J).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1995

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1995-1276938-5